Viabilidade de *Aspergillus pulverulentus* com Potencial para Produção de Proteases em Resíduos Agroindustriais

Larissa de P. Silva¹; Paulo A. S. Amaral.¹; Ageu F. P. Nascimento.¹; Mircella M. Alecrim¹; Salomão R. Martim.¹ Maria. F. S. Teixeira.¹.

¹Universidade Federal do Amazonas – UFAM
Instituto de Ciências Biológicas – ICB, Departamento de Parasitologia.
Av. Rodrigo Octávio, 6200, Coroado I, Caixa Postal 69077-000. E-mail: Larissa-depaiva@hotmail.com

RESUMO

Proteases são aplicadas em diversas áreas industriais e podem ser produzidas por fermentação semi-sólida, processo que consiste no crescimento microbiano em substrato sólido. O objetivo foi avaliar a influência de diferentes substratos na produção de proteases por Aspergillus pulverulentus DPUA-542. Com base nas características morfológicas foi verificada viabilidade, pureza e a confirmação taxonômica. Na fermentação foi utilizado como inóculo, suspensão celular 2% (p/v) em exocarpo de cupuaçu ou semente de açaí suplementados com farelo de arroz, amido ou peptona. Após sete dias, o extrato bruto foi separado para a determinação da atividade proteolítica. Em todos os substratos foi determinada a atividade de protease, no entanto, a mistura de exocarpo de cupuaçu e peptona (CC+Pep) foi determinada atividade mais significativa (64,60 U/mL), seguido de casca de açaí e peptona (CA+Pep) com 49,07 U/mL. O cultivo semi-sólido utilizando os resíduos suplementados com peptona mostraram-se viáveis para a produção de enzimas por Aspergillus.

Palavras-chave: Aspergillus, Proteases, Fermentação semi-sólida.

INTRODUÇÃO

Micro-organismos produzem uma variedade de enzimas que são utilizadas com sucesso em escala industrial. Elas possuem papel fundamental e são aplicadas nas áreas têxtil (amilase, celulase, oxidoredutase); de limpeza (protease, lipase celulase); papel (xilanase e lipase); e alimentícia (pectinase, protease e celulase) (Pasha, K. M. et al., 2013).

Entre os micro-organismos, os fungos filamentosos destacam-se na produção enzimática em matriz sólida por se adaptarem melhor ao substrato devido à sua forma de crescimento apical e utilizar menor quantidade de água (Maciel, 2006). Os fungos do gênero *Aspergillus* são amplamente distribuídos na natureza, suscetíveis a manipulação genética, podem ser considerados GRAS (Geralmente Reconhecido como Seguro) e têm potencial na produção de enzimas extracelulares que são de fácil recuperação após o processo de fermentação (Castro, R. J. S., Sato, H. H. 2013).

A fermentação semi-sólida (SSF) é utilizada como uma técnica efetiva para tecnologia de fermentação. Os substratos utilizados em SSF suprem as necessidades nutricionais dos micro-organismos e servem como ancoramento para as células. (Velmurugan, P. et al., 2011).

Portanto, objetivo desta pesquisa foi o de avaliar a viabilidade da linhagem e o desempenho de diferentes substratos para produção de proteases por *Aspergillus pulverulentus* DPUA-542.

MATERIAL E MÉTODOS

Micro-organismo

Para a produção de enzimas foi selecionada *Aspergillus pulverulentus* do acervo da Coleção de Culturas DPUA/UFAM. A espécie foi reativada em CYA (Czapek-Dox + extrato de levedura) a partir de cultura preservada em água destilada esterilizada.

Autenticação das Características Morfológicas

Para confirmação taxonômica foram analisadas as características macro e micro morfológicas de culturas preparadas em ágar CYA (Czapek-Dox + extrato de levedura), CZ (Czapek-Dox) e Malte. A obtenção de macro colônia e do microcultivo em meio de cultura seletivo foi realizado conforme Klich (2002) e Lacaz et al. (2002). Os cultivos foram mantidos a 30° C durante sete dias.

Fermentação Semi-sólida

A fermentação foi conduzida utilizando como substratos os resíduos do cupuaçu (exocarpo) ou açaí (semente) suplementados com farelo de arroz, amido e peptona na proporção 9:1.

Os substratos (10g) foram umedecidos com uma solução salina (g/L) contendo fosfato de potássio monobásico (0,1), sulfato de magnésio (0,5), cloreto de sódio (0,5) e sulfato ferroso (0,004). O pH foi ajustado para 6,0, os resíduos foram distribuídos em tubos de ensaio (200x25mm) e esterilizados a 121°C, durante 15 minutos. Após resfriamento, o inoculo (suspensão celular 2% p/v) foi transferido retirado da cultura estoque. A fermentação foi realizada a 30°C, por 7 dias. As enzimas foram extraídas por adição de água destilada esterilizada ao substrato e agitação durante 15 minutos. O extrato bruto foi separado por filtração a vácuo utilizando papel de filtro Whatman ® n°1.

Determinação da atividade proteolítica quantitativa

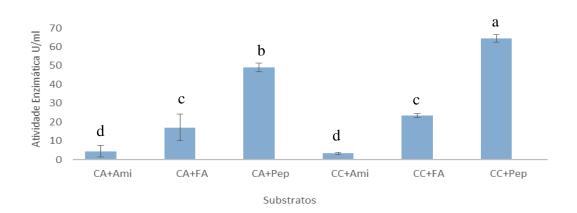
Para determinação da atividade enzimática proteolítica foi adicionado 250 μL de solução de azocaseína 1% (p/v) em tampão TRIS-HCl 0,1 M, pH 7,2 em 150 μL de extrato bruto, em tubos do tipo Falcon. Os tubos reação foram incubados por 1 hora a 25 °C em câmara escura. Para interrupção da reação foi adicionado 1,2 mL de ácido tricloroacético 10% (p/v) e em seguida procedeu-se a centrifugação por 10 minutos a 10000 rpm, a 4°C. Após a centrifugação, de cada sobrenadante foi retirado 0,8 mL e transferido para tubos de ensaio contendo 1,4 mL de hidróxido de sódio 1M. A leitura das amostras foi realizada a 440 nm. Como branco foi utilizado tampão na solução de azocaseína 1% (p/v) em tampão TRIS-HCl 0,1 M, pH 7,2.

O pH de todos os extratos foi aferido após a filtração. Todas as análises foram realizadas em triplicata.

Análise estatística

Os resultados foram submetidos à análise estatística descritiva média, desvio padrão, gráfico e tabelas para os cálculos de atividade enzimática ($R2 \ge 95\%$) por meio de análise de variância (Anova) e teste Tukey (p < 0,05), utilizando o software Minitab ® versão 17.0.

RESULTADOS E DISCUSSÕES


Viabilidade e Confirmação Taxonômica

A. pulverulentus características morfológicas e estruturas vegetativa e de reprodução característico da espécie, conforme citado por (Klich and Pitt, 1988). Estes resultados mostram a sua viabilidade após dois anos de estocagem em água destilada esterilizada.

Atividade enzimática por método Quantitativo

Os resultados mostraram que *Aspergillus* pulverulentus produziu proteases em todos os substratos avaliados. Contudo o valor de atividade proteolítica significativa (64,60 U/ml) foi determinado em endocarpo de cupuaçu e peptona (CC+Pep). Em semente de açaí e peptona (CA+Pep), seguido de exocarpo de cupuaçu e farelo de arroz (CC+FA) os valores de atividade proteolítica foram inferiores 24,05% e 63,63% respectivamente. Nos demais substratos foi observada a redução significativa das proteases nas condições experimentais (Gráfico 1.)

Gráfico 1. Atividade proteolítica de A. pulverulentus produzidas por fermentação semi-sólida.

C+FA – endocarpo de cupuaçu e farelo de arroz, CC+Pep – endocarpo de cupuaçu e peptona, CC+Ami – endocarpo de cupuaçu e Amido, CA+FA – semente de açaí e farelo de arroz, CA+Pep – semente de açaí e peptona, CA+Ami – semente de açaí e amido. Médias que não compartilham uma letra são significativamente diferentes.

A fermentação em estado semi-sólido reproduz o habitat natural dos fungos filamentosos, de modo que esses micro-organismos são capazes de crescer satisfatoriamente em substrato sólido e excretar grande quantidade de enzimas (Silva, et al., 2005).

Fontes de nitrogênio têm o maior impacto no desempenho de fermentação porque o nitrogênio é necessário para a replicação celular, manutenção, metabolismo e produção de enzimas. (Smith AD, Holtzapple MT. 2011). Fontes orgânicas de nitrogênio, como a peptona, comparadas com fontes inorgânicas promovem crescimento celular mais acelerado e maior densidade celular final.

Os resultados sugerem que a peptona teve efeitos complementares no crescimento celular do fungo filamentoso, auxiliando a maior produção de proteases durante a fermentação, sendo observada, portanto a maior atividade proteolítica ao utilizar a combinação de substrato utilizando-se resíduos agroindustriais suplementados com peptona.

Embora o pH da totalidade de substratos tenha sido aferido para 6,0, no extrato bruto recuperado, ocorreu variação de pH de 5,0 (CC+FA; CC+Ami, CA+FA, CA+Ami) a 7,0 (CC+ Pep e CA+Pep). As amostras de extrato bruto que demonstram maior atividade de proteases o pH foi aferido para 5,0 a 7,0 revelando provável presença de proteases neutras e levemente ácidas.

CONCLUSÕES

Os resultados indicaram que entre os vários resíduos agroindustriais utilizados, exocarpo de cupuaçu suplementado com peptona foi o substrato adequado para síntese de proteases, revelando a possibilidade de utilização desse substrato para produção dessas enzimas para aplicações biotecnológicas.

REFERÊNCIAS BIBLIOGRÁFICAS

Electronic Resources

Castro, R. J. S., Sato, H. H. Synergistic effects of agroindustrial wastes on simultaneous production of protease and α -amylase under solid state fermentation using a simplex centroid mixture design. Industrial Crops and Products, Volume 49, Pages 813-821, 2013. [Online] Available at: http://www.sciencedirect.com/science/article/pii/S092666901300334

Pasha, K. M., et al. Screening of a Pectinolytic Fungal Strain; *Aspergillus foetidus* MTCC 10367 for the Production of Multiple Enzymes of Industrial Importance. Int J Pharm Bio Sci, Apr; 4(2): (B) 1205 – 1209, 2013. [Online] Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.302.1734

Velmurugan, P., et al. Monascus pigment production by solid-state fermentation with corncob substrate. Journal of Bioscience and Bioengineering VOL.112 No. 6, 590–594, 2011. [Online] Available at: http://www.sciencedirect.com/science/article/pii/S1389172311003112

Journal

Almeida, C. A. V., et al. Produção de Protease de *Aspergillus niger* no Cultivo em Estado Sólido em Biomassa de Arroz e Maracujá. Safety, Health and Environment World Congress, © SHEWC. 2010.

Silva, E.M., Machuca, A. and Milagres, A.M.F. Evaluating the growth and enzyme production from *Lentinula edodes* strains. Process Biochem 40, 161–164. 2005.

Smith AD, Holtzapple MT. Investigation of the optimal carbon-nitrogen ratio and carbohydrate—nutrient blend for mixed acid batch fermentations. Bioresour Technol 102:5976–5987. 2011.

Book

Klich, M. A. Identification of common *Aspergillus* species. Central albureauvoor Schimmel cultures, Utrecht, The Netherlands. 1st. Ed. 122 pp. 2002.

Klich and Pitt. A Laboratory Guide To Common Aspergillus Species and Their Teleomorphs, Commonweath Scientific and Industrial Research Organization, Division of Food Processing, 1988.