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web

Research
Advance the state-of-the-art.

Development

Generate products.

Innovation

Evolve products by incorporating state-of-the-art results.
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web

Concept

Automatic extraction of knowledge or patterns that are
interesting (novel, useful, implicit, etc.) from large volumes of
data.

Tasks
m Data engineering
m Characterization

m Prediction




web

Concept

A model aims to represent the nature or reality from a specific
perspective. A model is an artificial construction where all
extraneous details have been removed or abstracted, while
keeping the key features necessary for analysis and
understanding.




web

Paradigms

m Combinatorial
m Probabilistic
m Algebraic

m Graph-based




web

Problem
Determine the sets of items that occur simultaneously in
transactions.

Strategy
Traverse the search space of sets of items determining whether
they co-occur.

Challenge

There are O(2") possible sets given n items.
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web

Problem

Determine the groups of entities that are similar and may be
handled together.

Strategy

Model the likelihood ot belonging to a group (cluster) as a
probabilistic function.

Challenge

We should determine an expressive yet simple to represent and
manipulate model.




Probabilistic Models
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Figure 18.1. Iris data: Xy:sepal length versus Xa:sepal width. The class means are show in black;
Summary the density contours are also shown. The square represents a test point labeled x.
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Figure 18.2. Naive Bayes: Xi:sepal length versus Xp:sepal width. The class means are shown in
black; the density contours are also shown. The square represents a test point labeled x.
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web

Problem
Predict the class of an entity, given a set of known entities
previously assessed.

Strategy

Create a prediction model that partitions the entities into
classes and use the model to classify unknown samples.

Challenge
How to couple with bias and variance?

‘



Algebraic Models
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Data Science Figure 21.3. Soft margin hyperplane: the shaded poinis are the support vectors. The margin is 1/ [|w|

as illustrated, and points with positive slack values are also shown (thin black line).
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web

Problem

Determine the groups of entities that are similar and may be
handled together.

Strategy

Model the relations among entities as a weighted graph and
partition the graph looking for minimum cuts.

Challenge
Weight model.

‘



Graph-based Models
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Data Mining

Research, Development and Innovation
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web

How may data mining models and algorithms account for:

m Social theories?
m Invariants?
m Premises?

m Dynamic behavior?
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Fact

The evolution of the Internet and the Web makes them not
only very popular, but also dynamic and diversified social media
that may be used to sense and understand the society.

Mining social networks must deal with:

m Dynamic behavior
Complex relationships
Heterogeneous data
Incomplete information
Noisy data
Lack of scalability
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Sentiment Analysis
SIGIR'14

m Definition
m Automatically extraction of opinions, sentiments, attitudes,
and emotions expressed in text messages (i.e., Twitter).
m Motivation

m It allows us to track products, brands and people to
determine whether they are viewed positively or negatively.

m Problem
m Content is created almost at the same time the event is
happening in the real world.
m Keeping track of sentiment streams is useful for
advertising.
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Research Questions
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W Dealing with Drifts

Data Mining

InWeb
KD@InWeb
Data Mining
Graph Mining

Dynamic
behavior

Complex
relationships

Heterogeneous
data

Noisy data

Incomplete
information

Lack of
scalability

Data Science

Summary
Aor 15. 2015

m Two properties are necessary in order to produce classifiers
that are robust to drifts:
m Adaptiveness:
m The ability to adapt itself to drifts.
m Memorability:
m The ability to recover itself from drifts.
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Dealing with Drifts

m Two properties are necessary in order to produce classifiers
that are robust to drifts:
m Adaptiveness:

m The ability to adapt itself to drifts.
= The training-set must contain fresh messages.

m Memorability:
m The ability to recover itself from drifts.
= The training-set must contain pre-drift messages.
m Improving both properties simultaneously may lead to a
conflict-objective problem.
m Improve adaptiveness may hurt memorability, and
vice-versa.



Pareto and Kaldor-Hicks Principles
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Utility Measures

m Distance in space:

= How similar message ¢; is to the newest message t,,.

R(tn)NR(t;
- () = R

m Distance in time:
m How fresh is the message.
(7))
u Ut(t]’) = ’Y_(t.nL)
m ~y(t;) returns the time in which message ¢; arrived.
m Random permutation of messages:
_ alty)
| Ur(t]‘) = |Di|
m «(t;) returns the position of ¢; in the shuffle.
m D, is the training set at time step n.




Utility Measures

Data Mining At each time step n:
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Evaluation
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Evaluation

MSE

m MSE and Labeling Effort
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web

Mining social networks must deal with:

Dynamic behavior
Complex relationships
Heterogeneous data
Incomplete information
Noisy data

Lack of scalability




web

Motivation

m Attribute patterns provide correlations in terms of the
content

m Topological patterns provide correlations in terms of the
network structure

m Both patterns refer to the same entities and information

How can we analyze them together?



Structural Correlation Patterns
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web

What is the probability of a vertex that has an attribute set S
be part of a correlated dense subgraph?

An SCP is a pair (attribute set, dense subgraph)

Dense subgraphs are defined as quasi-cliques

Problem:

Identifying attributes and their respective structural patterns
(i.e., dense subgraphs) given a set of constraints:

m Attribute set frequency, dense subgraph size and density, €
(structural coverage), statistical significance of e.
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Example: DBLP

attribute set support str. correlation stat. significance
search rank 420 0.19 635,349
perform file 404 0.14 555,067
structur index 404 0.14 555,067
search mine 413 0.14 490,932
us xml 400 0.11 442,638

R —

Ototina dense subgraph

Alok Choudhasy
es Browne

(a) {search,rank}
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Mining social networks must deal with:

Dynamic behavior
Complex relationships
Heterogeneous data
Incomplete information
Noisy data

Lack of scalability




w Impact of Visual Attributes on Diffusion
T (ws] WebSci'14
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Framework
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Visual Attributes are Complementary
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web

Mining social networks must deal with:

m Dynamic behavior

m Complex relationships
Heterogeneous data
Incomplete information
Noisy data
Lack of scalability




web

Sentiment Analysis

Sentiment Analysis (or opinion mining) aims to interpret text
and predict polarity of the writer regarding a topic or entity.

Challenges
m Language ambiguity
m Dinamicity of discussions

m Lack of labeled textual data

Is it possible to analyze sentiment without assessing
content?



Knowledge Transfer to Sentiment Analysis
KDD'11, JIDM'11, ICWSM'13, and WSDM'14
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Knowledge Transfer to Sentiment Analysis
KDD'11, JIDM'11, ICWSM'13, and WSDM'14

Data Mining

o Bias is inherent to most humans [Watson 1991], since they:
KDe@InWeb ] o . )
St m take a particular position regarding a subject

Graph Mining m have a personal interest from the arguer in the outcome of

Dynamic the argument or discussion.
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Complex m lack proper balance and neutrality in argumentation
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m lack proper critical doubt
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Summary
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Social Media Endorsements as
Evidence of User Bias

Endorsements: interactions through which a user implicitly

agrees with another user w.r.t. a certain content:

wWiGeEl

®

retweet
Q@OfficialMyTeamProfile, @CandidateX.

like
Democrats, Republicans, New York Giants

pin, repin
people, companies, causes



The Opinion Agreement Graph

Data Mining

= Solid edge: two users endorse the same users
InED m Dashed edge: two users are endorsed by the same users
ARSI = Edge weight: the lift of the size of both sets
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Transfer Knowledge to Sentiment Analysis
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w Comparison to SVM
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F1-measure

Competitive to SVM, despite not using labeled textual
data

SVM performance decreases over time, bias-based does
not

ELECTIONS-BR dataset SOCCER dataset
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w Latest developments
T w] WSDM'14

Data Mining
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Data Mining m Users present self-report imbalances, that is, they

Graph Mining m tend to report more positive emotions.
Dynamic m tend to report more extreme emotions.

behavior

e m We exploit such imbalances by

REREES m considering positive emotions to label data.

zletterogeneous m considering terms used in spikes in social streams.
ata

Noisy data m Our social psychology-inspired framework produces
Incomplete accuracies up to 84% while analyzing live reactions.
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Self-Report Imbalances
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o » Social media: self-reported platforms [Rost et al.,
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Self-Report Imbalances
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L » Social media: self-reported platforms [Rost et al.,

scalability CSCW'13; Lin et al.,, WWW'13]

SRR m Opinions seen on social media are not a random sample of
the opinion population
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Positive-negative Self-report Imbalance

Data Mining

People tend to express positive feelings more than
InWeb negative feelings in social environments [Berger, 2013;
KD@InWeb Diener, 1985; Larson, 1982]
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Extreme-Average Self-Report Imbalance

Data Mining

People tend to express extreme feelings more than
InWeb average feelings in social environments [Anderson, 1998;
KD@InWeb Dellaroccas, 2006; Kiciman, 2012]
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Term arousal

m classical feature representation: TF, TF-IDF...

m problem: they are static and do not react quickly to new,
discriminative sentiment terms

m we propose a term arousal representation:

Wi, term

7 (1)

Wt term =

m intuition: informative “sentimental” terms should appear
more frequently in spikes
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Mining social networks must deal with:

Dynamic behavior
Complex relationships
Heterogeneous data
Incomplete information
Noisy data

Lack of scalability




Web Observatory

|nweb observatorio.inweb.org.br

Data Mining

Motivation
InWeb

KD@InWeb . . . .
. m There is an increasing use of the Web in events of overall

Data Mining . e
interest such as politics and sports.

Graph Mining
Byt m Major motivations are the lack of a central control and the
SR fast information propagation.

Complex

relationships m Recently, there has been an emphasis on "what you are

Heterogeneous doing” instead of "who you are”.
ata

Noisy data

Challenge

Incomplete
information

" Qualify, quantify, and summarize the content being exchanged
scalability in the various Internet-related media on line and evaluate its

Data Science impact on specific events.

Summary
Aor 15. 2015



Data Mining

InWeb
KD@InWeb
Data Mining
Graph Mining

Dynamic
behavior

Complex
relationships

Heterogeneous
data

Noisy data

Incomplete
information

Lack of
scalability

Data Science

Summary

Aor 15. 2015

Web Observatory

On line tool for capturing, analyzing and presenting the
dynamics of a given scenario on the Web.

Scenarios

Soccer World Cup

Olympics

Brazilian National Soccer League
Brazilian Elections

Public Safety

Brand reputation

Dengue Epidemics
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Background on dengue

m Dengue is a mosquito-borne infection that causes a severe
flu-like illness, and sometimes a potentially lethal
complication

m Approximately 2 billion people from more than 100
countries are at risk of infection and about 50 million
infections occur every year worldwide

» Outbreaks tend to occur every year during the rainy
season but there is large variation of the degree of the
epidemic in areas with similar rainfall
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Background on dengue

m Current strategies for prediction of dengue epidemics are
based on surveillance of insects, which provide only a
rough estimate of cases

m Once disease outbreaks are detected in a certain area,
efforts need to be concentrated to avoid further cases and
to optimize treatment and staff - number of cases may
reach several hundred thousands

m In Brazil, where there is a epidemics accounting system,

detection of important outbreaks may take a few weeks,
leading to loss of precious time to address the epidemy
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WebSci'11, Iberamia’l4

m To analyze how dengue epidemics manifests in Twitter
and to what extent that information can be used for
surveillance.

m To design and implement an active surveillance framework
that analyzes how social media reflects epidemics based on
a combination of four dimensions: volume, location, time,
and public perception.

m To exploit user generated content available in online social
media to predict the dengue epidemics.
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m Determine the sentiment categories

Personal experience: “You know | have had dengue?”
Ironic/sarcastic tweets: “My life looks like a
dengue-prone steady water”

Opinion: “The campaign against dengue is very cool”
Resource: “Dengue virus type 4 in circulation”
Marketing: "Everybody must fight dengue. Brazil relies
on you"
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Data Mining Sentiment distribution over time
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w Content analysis

Data Mining Is personal experience a good indicator of dengue’s incidence?
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w Correlation Analysis

Data Mining Manaus
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. Personal experience, notifications and symptom perception
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Correlation Analysis

Manaus

Cross-correlation between personal experience and symptom
perception from November, 2010 to May, 2011
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Data Mining Rio de Janeiro
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Correlation Analysis

Rio de Janeiro

Cross-correlation between personal experience and symptom
perception from November, 2010 to May, 2011
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Spatio-temporal analysis

Data Mining
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m Evaluated two metrics

m the volume of tweets
m the PTPE value
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Spatio-temporal analysis

Data Mining
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m Evaluated two metrics

m the volume of tweets Rand Index = 0.8506
m the PTPE value Rand Index = 0.8914
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Surveillance
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SEMANA DE REFERENCIA COMEGANDO EM

Mapas Relativos a Dengue no Brasil

Tendéncia Relativa
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lnweb Summary
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m Twitter data are useful for epidemics surveillance.
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Scalability and Adaptability
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web

Strategy

l an adaptable and data-conscious partitioning scheme at
the granularity of transactions which provides a complete
and balanced distribution of the dataset, as well as of the
tree that the algorithm builds and its associated
projections, with a low communication overhead;

B implementation in the filter-labeled stream paradigm, on
top of the Watershed programming framework
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. 1. InputReader
~=D=UL, Di
—+ local frequencies

2. ftemCounter
+ local frequencies
—+ global frequencies

3. FPTreeBuilder
+ global frequencies
—+ local p-FPTrees

4. FPTreePartitioner
+ local p-FPTrees
—+ local p-CFPTrees

5. ltemsetExtractor
+ local p-CFPTrees
— minsupp-itemsets

— inter-node comm.
— intra-node comm.
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How about Big Data?
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What's Big Data?
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Data Scientist
m Professional of the decade

m “Quants’ from 80s, Software engineers from 90s e Web
analysts from 00s

Profile
m Analytical ability
Investigative capacity
Entrepreneurship

|
|
m Business understanding
]

Programming skills
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Problem demands evolve faster than we think.

Maximizing quality and contributions is always a surviving
strategy.

Real problems help w.r.t. research relevance and enable
innovation.

Technically, big data has been here. The novelty is the big
user.

Data science formalizes the power shift to the big user.

Data mining has plenty of room for research, development
and innovation.
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