## Efeito da Estrutura dos Álcoois na Produção Enzimática de Ésteres de Origem Natural

Adriana Biasi Vanin<sup>1</sup>, Bruna Maria Saorin Putom<sup>2</sup>, Rogério Luiz Cansian<sup>2</sup>, Natalia Paroul<sup>2</sup>, Débora de Oliveira<sup>3</sup>

<sup>1</sup>Universidade do Oeste de Santa Catarina – Área das Ciências Exatas e Tecnológicas - Rua Getúlio Vargas, 2125 - Bairro Flor da Serra, 89600-000 Joaçaba – SC – Brasil. E-mail: adriana.vanin@unoesc.edu.br
<sup>2</sup>Departamento de Ciências Exatas e da Terra - Universidade Regional Integrada do Alto Uruguai e das Missões – Campus Erechim, Av. Sete de Setembro, 1621- 99700000 – Erechim – RS – Brasil.
<sup>3</sup> Universidade Federal de Santa Catarina - Departamento de Química e de Engenharia de Alimentos - Campus Reitor João David Ferreira Lima, Florianópolis – SC – Brasil.

#### **RESUMO**

O presente trabalho teve como objetivo maximizar a produção de eugenil acetato e acetato de linalina via esterificação enzimática do óleo essencial do cravo-da-índia e de linalol utilizando a lipase imobilizada Novozym 435 como catalisador. A melhor condição reacional com conversão ~100% em eugenil acetato foi obtida na temperatura de 60 °C, com excesso de anidrido acético (razão molar 1:5) e concentração de enzima 10% (m/m substratos). Maiores produções de linalil acetato utilizando linalol foram alcançadas após 48 horas de reação com concentração de enzima de 5%, à 70°C e razão molar ácido:álcool de 1:1.

Palavras-chave: Eugenol, linalol, acetatato de eugenila, acetato de linanila, esterificação.

## 1. INTRODUÇÃO

A preocupação com a produção de alimentos e fármacos está cada vez mais voltada para a qualidade do produto final e suas implicações no meio ambiente, ao encontro do conceito de sustentabilidade e respeito aos recursos naturais e que sejam benéficos à saúde. Neste contexto, a biotecnologia tem contribuído para o desenvolvimento de pesquisas sobre produção de aromas, estimulando as indústrias à utilização de enzimas ou microrganismos para a produção destes compostos (BERGER, 2009).

Os processos biotecnológicos são capazes de gerar sistemas complexos, com muitos dos compostos necessários para a caracterização dos aromas, o que muitas vezes, na produção por via sintética não é alcançado ou se mostra economicamente inviável (Berger, 2009). Os produtos gerados a partir de fontes naturais via catálise enzimática ou via biotransformação são considerados naturais, o que proporciona grande aceitação no mercado. Por possuírem diferentes substâncias bioativas com ação antibacteriana, antifúngica, antioxidante, analgésica e antiinflamatória, entre outras, os óleos essenciais são substâncias muito estudadas em vários ramos da ciência, sendo a indústria de alimentos uma das mais beneficiadas (Burt, 2004).

Assim, o objetivo central desse trabalho é desenvolver uma tecnologia limpa de síntese enzimática de aromatizantes naturais usando a lipase comercial Novozym 435 como biocatalisador e, com o intuito de comparar o efeito da estrutura dos alcoóis na produção de ésteres aromáticos, foi utilizado como substratos para a reação enzimática, o óleo essencial da espécie *Eugenia caryophyllata* Thumb e o linalol.

### 2. MATERIAL E MÉTODOS

### 2.1 Produção enzimática dos ésteres

A mistura reacional foi formada por óleo essencial do cravo-da-índia/linalol, anidrido acético, enzima e as peneiras moleculares em quantidades pré-estabelecidas no planejamento experimental e adicionadas em erlenmeyers de 50 mL com volume reacional de 5 mL. Todos os experimentos foram realizados em *shaker* com agitação constante de 150rpm e tempo da reação fixado em 6 horas. Após o término de reação o biocatalisador foi separado dos substratos por meio de filtração com papel filtro e a reação quantificada por cromatografia gasosa.

### 2.2 Determinação da quantificação da reação por cromatografia gasosa

A quantificação dos ésteres foi realizada por cromatografia gasosa em equipamento Shimadzu GC-2010. As análises foram realizadas utilizando coluna capilar de sílica fundida modelo WAX (30m x 250 $\mu$ m d.i.), 0,25 $\mu$ m de espessura de filme, detector FID, com a seguinte programação de temperatura: 40-180°C (3°C/min), 180-230°C (20°C/min), 230°C (20min), temperatura do injetor 250°C, detector a 275°C, modo de injeção split, razão de split 1:100, gás de arraste  $H_2$  (56KPa), volume injetado 0,4 $\mu$ L de amostra diluída em n-hexano (1:10). A determinação da conversão para a produção de eugenil acetato foi realizada acompanhando a redução da área do sinal do agente limitante (eugenol).

### 2.3. Otimização da Produção Enzimática dos Ésteres

Para determinação das condições experimentais que maximizassem a síntese dos ésteres, foi realizado dois delineamentos composto central completos  $2^3$  com triplicata do ponto central, totalizando 11 experimentos. As faixas de temperatura (T), razão molar (RM) e concentração de enzima [E] (m/m substratos) avaliadas são apresentadas na Tabela 1.

As variáveis apresentadas na Tabela 1 para o linalol são resultados de um primeiro delineamento onde a temperatura (30, 50 e 70°C) e a razão molar (1:1, 2:1 e 3:1) apresentaram influencia significativa positiva. Apesar de a concentração de enzima (1, 5,5 e 10%) não ter apresentado efeito significativo positivo ela também foi mantida e deslocado seus níveis, buscando aumentar a conversão em linalil ésteres.

**Tabela 1 -** Variáveis e níveis estudados no delineamento composto central completo 2<sup>3</sup> para produção enzimática dos ésteres.

| Variáveis/Níveis | Temperatura (°C) |         | Razão Molar (mol/mol)<br>(anidrido/álcool) |         | [E]<br>(% m/m substratos) |         |
|------------------|------------------|---------|--------------------------------------------|---------|---------------------------|---------|
|                  | Eugenol          | Linalol | Eugenol                                    | Linalol | Eugenol                   | Linalol |
| -1               | 40               | 50      | 1:1                                        | 3:1     | 1                         | 5       |
| 0                | 50               | 60      | 3:1                                        | 6:1     | 5,5                       | 10      |
| 1                | 60               | 70      | 5:1                                        | 9:1     | 10                        | 15      |

## 3. RESULTADOS E DISCUSSÕES

Na Tabela 2 está apresentada a matriz do planejamento experimental 2<sup>3</sup> completo com os valores reais e codificados das variáveis independentes e as conversões em termos de eugenil acetato e linalil acetato.



**Tabela 2-** Matriz do delineamento composto central 2<sup>3</sup> (valores codificados e reais) com as respostas em termos de conversão em eugenil acetato e linalil acetato

| Ensaio | Temperatura (°C) |         | Razão molar     |          | [ ] Enzima (%m/m) |          | Conversão (%) |         |
|--------|------------------|---------|-----------------|----------|-------------------|----------|---------------|---------|
|        |                  |         | anidrido/álcool |          |                   |          | Acetatos      |         |
|        | Eugenol          | Linalol | Eugenol         | Linalol  | Eugenol           | Linalol  | Eugenil       | Linalil |
| 1      | -1 (40)          | -1 (50) | -1 (1:1)        | -1 (3:1) | -1 (1%)           | -1 (5%)  | 59,16         | 0,6     |
| 2      | 1 (60)           | 1 (70)  | -1 (1:1)        | -1 (3:1) | -1 (1%)           | -1 (5%)  | 86,81         | 3,38    |
| 3      | -1 (40)          | -1 (50) | 1 (5:1)         | -1 (3:1) | -1 (1%)           | 1 (15%)  | 89,99         | 0,63    |
| 4      | 1 (60)           | 1 (70)  | 1 (5:1)         | -1 (3:1) | -1 (1%)           | 1 (15%)  | 93,87         | 3,55    |
| 5      | -1 (40)          | -1 (50) | -1 (1:1)        | 1 (9:1)  | 1 (10%)           | -1 (5%)  | 44,73         | 0,5     |
| 6      | 1 (60)           | 1 (70)  | -1 (1:1)        | 1 (9:1)  | 1 (10%)           | -1 (5%)  | 82,30         | 5,44    |
| 7      | -1 (40)          | -1 (50) | 1 (5:1)         | 1 (9:1)  | 1 (10%)           | 1 (15%)  | 90,47         | 0,91    |
| 8      | 1 (60)           | 1 (70)  | 1 (5:1)         | 1 (9:1)  | 1 (10%)           | 1 (15%)  | 99,87         | 0,65    |
| 9      | 0 (50)           | 0 (60)  | 0 (3:1)         | 0 (6:1)  | 0 (5,5%)          | 0 (10%)  | 96,98         | 1,16    |
| 10     | 0 (50)           | 0 (60)  | 0 (3:1)         | 0 (6:1)  | 0 (5,5%)          | 0 (10%)  | 96,96         | 0,96    |
| 11     | 0 (50)           | 0 (60)  | 0 (3:1)         | 0 (6:1)  | 0 (5,5%)          | 0 (5,5%) | 97,41         | 0,93    |

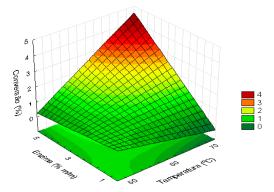
Em relação ao eugenil acetato, pode ser observado a partir desta tabela que altas conversões de foram obtidas em todos os níveis estudados, em diferentes concentrações de enzima, razão molar e temperatura. Analisando as respostas de conversão no ponto central (ensaios 9,10 e 11), verificou-se a boa reprodutibilidade dos experimentos. Maior taxa de conversão (~100%) foi obtida com temperatura 60°C, excesso de anidrido acético e concentração de enzima 10% (ensaio 8). Os resultados de conversão em eugenil acetato apresentados na Tabela 2 foram tratados estatisticamente.

Observou-se que em 6 horas de reação a razão molar e a temperatura apresentaram efeito significativo positivo, portanto, maiores conversões são obtidas em altas temperaturas e em excesso de anidrido acético enquanto que a concentração de enzima apresentou efeito significativo negativo (p<0,05) na conversão. Este fato indica que para manter altas taxas de produção, a síntese enzimática pode ser conduzida com menores concentrações de catalisador, significando economia durante o processo.

No trabalho realizado por Chiaradia *et al.* (2012) onde a conversão de eugenol através da catálise enzimática utilizando lipase comercial imobilizada de *Candida antarctica* como catalisador e anidrido acético como agente acilante foi investigada, a melhor conversão foi de 99% usando razão molar anidrido/eugenol de 3:1, concentração de enzima 5,5% (m/m substratos) e temperatura de 50 °C em 6 horas de reação.

Após o tratamento dos dados obtidos em termos de linalil acetato observou-se que somente a temperatura apresentou efeito significativo positivo (p<0,05) na conversão. Com base nestes resultados, buscando aumentar a conversão do processo, construiu-se um terceiro delineamento composto central 2² completo. Tendo em vista o custo do catalisador no processo como um todo, a concentração de enzima foi diminuída para 1%. A razão molar anidrido/álcool também foi mantida constante (1:1).

Ainda em relação ao linalil acetato, pode ser observado que baixas conversões foram encontradas em todos os níveis estudados, em diferentes concentrações de enzima, razão molar e temperatura. Castro *et al.* (1997) estudou a síntese de ésteres terpenóides via catálise enzimática e, avaliando a influência do tamanho da cadeia alifática do ácido graxo e da estrutura do álcool




terpênico encontrou graus de esterificação maiores que 95% somente para álcoóis primários como citronelol, geroniol e nerol.

Na Tabela 3 está apresentada a matriz do terceiro delineamento composto central 2<sup>2</sup> completo com os valores reais e codificados das variáveis independentes e as conversões em linalil acetato. Os resultados de conversão em linalil acetato foram tratados estatisticamente, o modelo foi validado permitindo assim a construção da superfície de resposta (Figura 1).

**Tabela 3 -** Matriz do delineamento composto central 2<sup>2</sup> (valores codificados e reais) com as respostas em termos de conversão em linalil acetato

| acciaio |                     |                     |                  |
|---------|---------------------|---------------------|------------------|
| Ensaio  | Temperatura<br>(°C) | [ ]Enzima<br>(%m/m) | Conversão<br>(%) |
| 1       | -1 (50°C)           | -1 (1%)             | 0,8              |
| 2       | 1 (70°C)            | -1 (1%)             | 0,07             |
| 3       | -1 (50°C)           | 1 (5%)              | 0,59             |
| 4       | 1 (70°C)            | 1 (5%)              | 3,81             |
| 5       | 0 (60°C)            | 0 (3%)              | 1,24             |
| 6       | 0 (60°C)            | 0 (3%)              | 1,28             |
| 7       | 0 (60°C)            | 0 (3%)              | 1,75             |



**Figura 1**- Superfície de resposta ilustrando o efeito da temperatura e da concentração de enzima na produção de linalil ésteres

Observou-se ainda que em 6 horas de reação a temperatura apresentou efeito significativo positivo, o que representa que maiores faixas de temperatura (70°C) conduziriam maiores conversões em ésteres e, temperaturas superiores a 70 °C poderiam causar perda da atividade enzimática.

#### 4. CONCLUSÕES

Maiores produções de linalil acetato foram obtidas com concentração de enzima de 5%, à 70°C e razão molar ácido:álcool de 1:1. Catalisadores enzimáticos somente apresentam altos graus de esterificação somente para álcoóis primários como citronelol, geroniol e nerol. Sendo que, o grau de esterificação do catalisador é influenciado pelo tamanho da cadeia.

#### 5. REFERÊNCIAS BIBLIOGRÁFICAS

BERGER, R.G. Biotechnology of flavours – the next generation. **Biotechnology letters**, v.31, p.1751-1659, 2009.

BURT, S.A. Essential Oils: their antibacterial properties and applications in foods – A Review. **International Journal of Food Microbiology**, v.94, p.223-253, 2004.

CASTRO, H. F.; OLIVEIRA, P. C.; SOARES, C. A. F. Síntese de ésteres terpenóides por via enzimática: Influência do tamanho da cadeia alifática do ácido graxo e da estrutura do álcool de terpeno. **Ciência e Tecnologia de Alimentos**, v. 17 (3), p. 1997.

CHIARADIA, V.; PAROUL, N.; CANSIAN, R. L.; JÚNIOR, C. V.; DETOFOL, M. R.; LERIN, L. A.; OLIVEIRA, J. VLADIMIR.; OLIVEIRA, D. Synthesis of Eugenol Esters by Lipase-Catalyzed Reaction in Solvent-Free System. **Applied Biochemistry and Biotechnology**, v. 168, p. 742-751, 2012.